Total radical yields from tropospheric ethene ozonolysis.

نویسندگان

  • Mohammed S Alam
  • Marie Camredon
  • Andrew R Rickard
  • Timo Carr
  • Kevin P Wyche
  • Karen E Hornsby
  • Paul S Monks
  • William J Bloss
چکیده

The gas-phase reactions of ozone with alkenes can be significant sources of free radicals (OH, HO(2) and RO(2)) in the Earth's atmosphere. In this study the total radical production and degradation products from ethene ozonolysis have been measured, under conditions relevant to the troposphere, during a series of detailed simulation chamber experiments. Experiments were carried out in the European photoreactor EUPHORE (Valencia, Spain), utilising various instrumentation including a chemical-ionisation-reaction time-of-flight mass-spectrometer (CIR-TOF-MS) measuring volatile organic compounds/oxygenated volatile organic compounds (VOCs/OVOCs), a laser induced fluorescence (LIF) system for measuring HO(2) radical products and a peroxy radical chemical amplification (PERCA) instrument measuring HO(2) + ΣRO(2). The ethene + ozone reaction system was investigated with and without an OH radical scavenger, in order to suppress side reactions. Radical concentrations were measured under dry and humid conditions and interpreted through detailed chemical chamber box modelling, incorporating the Master Chemical Mechanism (MCMv3.1) degradation scheme for ethene, which was updated to include a more explicit representation of the ethene-ozone reaction mechanism.The rate coefficient for the ethene + ozone reaction was measured to be (1.45 ± 0.25) × 10(-18) cm(3) molecules(-1) s(-1) at 298 K, and a stabilised Criegee intermediate yield of 0.54 ± 0.12 was determined from excess CO scavenger experiments. An OH radical yield of 0.17 ± 0.09 was determined using a cyclohexane scavenger approach, by monitoring the formation of the OH-initiated cyclohexane oxidation products and HO(2). The results highlight the importance of knowing the [HO(2)] (particularly under alkene limited conditions and high [O(3)]) and scavenger chemistry when deriving radical yields. An averaged HO(2) yield of 0.27 ± 0.07 was determined by LIF/model fitting. The observed yields are interpreted in terms of branching ratios for each channel within the postulated ethene ozonolysis mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total radical yields from tropospheric ethene ozonolysisw

The gas-phase reactions of ozone with alkenes can be significant sources of free radicals (OH, HO2 and RO2) in the Earth’s atmosphere. In this study the total radical production and degradation products from ethene ozonolysis have been measured, under conditions relevant to the troposphere, during a series of detailed simulation chamber experiments. Experiments were carried out in the European ...

متن کامل

Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene

The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest f...

متن کامل

Heterogeneous Oxidation of Catechol.

Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxyg...

متن کامل

Mechanisms for the formation of organic acids in the gas-phase ozonolysis of 3-carene.

This paper describes experimental studies aimed at elucidating mechanisms for the formation of low-volatility organic acids in the gas-phase ozonolysis of 3-carene. Experiments were carried out in a static chamber under 'OH-free' conditions. A range of multifunctional acids-which are analogous to those observed from alpha-pinene ozonolysis-were identified in the condensed phase using gas chroma...

متن کامل

Secondary organic aerosol formation from cyclohexene ozonolysis: effect of OH scavenger and the role of radical chemistry.

To isolate secondary organic aerosol (SOA) formation in ozone-alkene systems from the additional influence of hydroxyl (OH) radicals formed in the gas-phase ozone-alkene reaction, OH scavengers are employed. The detailed chemistry associated with three different scavengers (cyclohexane, 2-butanol, and CO) is studied in relation to the effects of the scavengers on observed SOA yields in the ozon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 23  شماره 

صفحات  -

تاریخ انتشار 2011